RICE UNIVERSITY Ritz Values and Arnoldi Convergence for Non-Hermitian Matrices

نویسندگان

  • Russell Carden
  • Danny C. Sorensen
  • Noah G. Harding
  • Athanasios C. Antoulas
چکیده

Ritz Values and Arnoldi Convergence for Non-Hermitian Matrices

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RICE UNIVERSITY Ritz Values and Arnoldi Convergence for Nonsymmetric Matrices

Ritz Values and Arnoldi Convergence for Nonsymmetric Matrices by Russell Carden The restarted Arnoldi method, useful for determining a few desired eigenvalues of a matrix, employs shifts to refine eigenvalue estimates. In the symmetric case, using selected Ritz values as shifts produces convergence due to interlacing. For nonsymmetric matrices the behavior of Ritz values is insufficiently under...

متن کامل

Any Ritz Value Behavior Is Possible for Arnoldi and for GMRES

We show that arbitrary convergence behavior of Ritz values is possible in the Arnoldi method and we give two parametrizations of the class of matrices with initial Arnoldi vectors that generates prescribed Ritz values (in all iterations). The second parametrization enables us to prove that any GMRES residual norm history is possible with any prescribed Ritz values (in all iterations), provided ...

متن کامل

Ritz Value Localization for Non-Hermitian Matrices

Rayleigh–Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical ra...

متن کامل

A Global Arnoldi Method for Large non-Hermitian Eigenproblems with Special Applications to Multiple Eigenproblems∗

Global projection methods have been used for solving numerous large matrix equations, but nothing has been known on if and how a global projection method can be proposed for solving large eigenproblems. In this paper, based on the global Arnoldi process that generates an Forthonormal basis of a matrix Krylov subspace, a global Arnold method is proposed for large eigenproblems. It computes certa...

متن کامل

The Arnoldi Eigenvalue Iteration with Exact Shifts Can Fail

The restarted Arnoldi algorithm, implemented in the ARPACK software library and MATLAB’s eigs command, is among the most common means of computing select eigenvalues and eigenvectors of a large, sparse matrix. To assist convergence, a starting vector is repeatedly refined via the application of automatically-constructed polynomial filters whose roots are known as ‘exact shifts’. Though Sorensen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011